Unveiling the Pharmacological Significance of Marine Streptomyces violaceusniger KS20: Isolation, Characterization, and Assessment of Its Biomedical Applications

Author:

Chakraborty Bidhayak1,Shashiraj Kariyellappa Nagaraja1ORCID,Kumar Raju Suresh2ORCID,Bhat Meghashyama Prabhakara1,Basavarajappa Dhanyakumara Shivapoojar1,Almansour Abdulrahman I.2,Perumal Karthikeyan3,Nayaka Sreenivasa1ORCID

Affiliation:

1. P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, India

2. Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia

3. Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA

Abstract

Marine actinomycetes represent a highly favorable source of bioactive compounds and have been the mainstay of much research in recent years. Recent reports have shown that marine Streptomyces sp. can produce compounds with diverse and potent biological activities. Therefore, the key objective of the study was to isolate and screen a potential actinomycete from marine ecosystems of Devbagh and Tilmati beaches, Karwar. Streptomyces sp. KS20 was characterized and the ethyl acetate extract (EtOAc-Ex) was screened for biomedical applications. Streptomyces sp. KS20 produced grayish-white aerial and pale-yellow substrate mycelia and revealed an ancestral relationship with Streptomyces violaceusniger. Optimum growth of the organism was recorded at 30 °C and pH 7.0. The metabolite profiling of EtOAc-Ex expressed the existence of several bioactive metabolites, whereas the functional groups were indicated by Fourier transform infrared (FTIR) spectroscopy. A considerable antioxidant activity was shown for EtOAc-Ex with IC50 of 92.56 μg/mL. In addition to this, Streptomyces sp. KS20 exhibited significant antimicrobial properties, particularly against Escherichia coli, where a zone of inhibition measuring 36 ± 0.83 mm and a minimum inhibitory concentration (MIC) of 3.12 µg/mL were observed. The EtOAc-Ex even revealed significant antimycobacterial potency with IC50 of 6.25 μg/mL. Finally, the antiproliferative potentiality of EtOAc-Ex against A549 and PC-3 cell lines revealed a constant decline in cell viability while raising the concentration of EtOAc-Ex from 12.5 to 200 μg/mL. The IC50 values were determined as 94.73 μg/mL and 121.12 μg/mL for A549 and PC-3 cell lines, respectively. Overall, the exploration of secondary metabolites from marine Streptomyces sp. KS20 represents an exciting area of further research with the potential to discover novel bioactive compounds that could be developed into therapeutics for various medical applications.

Funder

King Saud University

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3