Acute Fluid Intake Impacts Assessment of Body Composition via Bioelectrical Impedance Analysis. A Randomized, Controlled Crossover Pilot Trial

Author:

Schierbauer Janis1ORCID,Günther Svenja1,Haupt Sandra1,Zimmer Rebecca T.1,Herz Daniel1,Voit Thomas1,Zimmermann Paul1,Wachsmuth Nadine B.1,Aberer Felix12ORCID,Moser Othmar12

Affiliation:

1. Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany

2. Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria

Abstract

Bioelectrical impedance analysis (BIA) has proven to be particularly useful due to its inexpensive and rapid assessment of total body water and body density. However, recent fluid intake may confound BIA results since equilibration of fluid between intra- and extracellular spaces may take several hours and furthermore, ingested fluids may not be fully absorbed. Therefore, we aimed to evaluate the impact of different fluid compositions on the BIA. A total of eighteen healthy individuals (10 females, mean ± SD age of 23.1 ± 1.8 years) performed a baseline measurement of body composition before they consumed isotonic 0.9% sodium-chloride (ISO), 5% glucose (GLU) or Ringer (RIN) solutions. During the visit of the control arm (CON), no fluid was consumed. Further impedance analyses were conducted every 10 min after the fluid consumption for 120 min. We found statistically significant interactions between the effects of solution ingestion and time for intra- (ICW, p < 0.01) and extracellular water (ECW, p < 0.0001), skeletal muscle mass (SMM, p < 0.001) and body fat mass (FM, p < 0.01), respectively. Simple main effects analysis showed that time had a statistically significant effect on changes in ICW (p < 0.01), ECW (p < 0.01), SMM (p < 0.01) and FM (p < 0.01), while fluid intake did not have a significant effect. Our results highlight the importance of a standardized pre-measurement nutrition, with particular attention to hydration status when using a BIA for the evaluation of body composition.

Funder

the Deutsche Forschungsgemeinschaft

the Open Access Publishing Fund of the University of Bayreuth

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3