Effect of Autophagy Regulated by Sirt1/FoxO1 Pathway on the Release of Factors Promoting Thrombosis from Vascular Endothelial Cells

Author:

Wu Qian,Hu Yuting,Jiang Minrui,Wang Fanglei,Gong GuoqingORCID

Abstract

Factors promoting thrombosis such as von Willebrand factor (vWF) and P-selectin are essential for the development of atherosclerosis (AS) and arterial thrombosis. The processing, maturation and release of vWF are regulated by autophagy of vascular endothelial cells. The Sirt1/FoxO1 pathway is an important pathway to regulate autophagy of endothelial cells, therefore the Sirt1/FoxO1 pathway may be an important target for the prevention of thrombosis. We investigated the role of ox-LDL in the release of vWF and P-selectin and the expression of Sirt1 and FoxO1 by Western Blot, Flow Cytometry, ELISA, and tandem fluorescent mRFP-GFP-LC3. We found that vWF and P-selectin secretion increased and Sirt1/FoxO1 pathway was depressed in human umbilical vein endothelial cells (HUVEC) when treated with ox-LDL. Moreover, the expression of autophagy-related protein LC3-II/I and p62 increased. Then, we explored the relationship between autophagy regulated by the Sirt1/FoxO1 pathway and the secretion of vWF and P-selectin. We found that Sirt1/FoxO1, activated by the Sirt1 activators resveratrol (RSV) and SRT1720, decreased the secretion of vWF and P-selectin, which can be abolished by the autophagy inhibitor 3-MA. The expression of Rab7 increased when Sirt1/FoxO1 pathway was activated, and the accumulation of p62 was decreased. Autophagy flux was inhibited by ox-LDL and Sirt1/FoxO1 pathway might enhance autophagy flux through the promotion of the Rab7 expression. Taken together, our data suggest that by enhancing autophagy flux and decreasing the release of vWF and P-selectin, the Sirt1/FoxO1 pathway may be a promising target to prevent AS and arterial thrombosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3