The Reason for Growth Inhibition of Ulmus pumila ‘Jinye’: Lower Resistance and Abnormal Development of Chloroplasts Slow Down the Accumulation of Energy

Author:

Zuo Lihui,Zhang Shuang,Liu Yichao,Huang Yinran,Yang Minsheng,Wang Jinmao

Abstract

Ulmus pumila ‘Jinye’, the colorful leaf mutant of Ulmus pumila L., is widely used in landscaping. In common with most leaf color mutants, U. pumila ‘Jinye’ exhibits growth inhibition. In this study, U. pumila L. and U. pumila ‘Jinye’ were used to elucidate the reasons for growth inhibition at the physiological, cellular microstructural, and transcriptional levels. The results showed that the pigment (chlorophyll a, chlorophyll b, and carotenoids) content of U. pumila L. was higher than that of U. pumila ‘Jinye’, whereas U. pumila ‘Jinye’ had a higher proportion of carotenoids, which may be the cause of the yellow leaves. Examination of the cell microstructure and RNA sequencing analysis showed that the leaf color and growth inhibition were mainly due to the following reasons: first, there were differences in the structure of the thylakoid grana layer. U. pumila L. has a normal chloroplast structure and clear thylakoid grana slice layer structure, with ordered and compact thylakoids. However, U. pumila ‘Jinye’ exhibited the grana lamella stacking failures and fewer thylakoid grana slice layers. As the pigment carrier and the key location for photosynthesis, the close stacking of thylakoid grana could combine more chlorophyll and promote efficient electron transfer promoting the photosynthesis reaction. In addition, U. pumila ‘Jinye’ had a lower capacity for light energy absorption, transformation, and transportation, carbon dioxide (CO2) fixation, lipopolysaccharide biosynthesis, auxin synthesis, and protein transport. The genes related to respiration and starch consumption were higher than those of U. pumila L., which indicated less energy accumulation caused the growth inhibition of U. pumila ‘Jinye’. Finally, compared with U. pumila ‘Jinye’, the transcription of genes related to stress resistance all showed an upward trend in U. pumila L. That is to say, U. pumila L. had a greater ability to resist adversity, which could maintain the stability of the intracellular environment and maintain normal progress of physiological metabolism. However, U. pumila ‘Jinye’ was more susceptible to changes in the external environment, which affected normal physiological metabolism. This study provides evidence for the main cause of growth inhibition in U. pumila ‘Jinye’, information for future cultivation, and information on the mutation mechanism for the breeding of colored leaf trees.

Funder

National Natural Science Foundation of China

Hebei Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3