Abstract
Genetic variability is an important causative factor for susceptibility and pathogenesis of type 2 diabetes (T2D). Histone deacetylase, sirtuin 2 (SIRT2), plays regulatory roles in glucose metabolism and insulin sensitivity. However, whether the SIRT2 variants or haplotypes contribute to T2D risk remain to be elucidated. In this study, we first detected three novel polymorphisms (P-MU1, P-MU2, and P-MU3) in the promoter of SIRT2 in the Chinese population. All pairwise sets of the three loci were strongly in linkage disequilibrium. Next, we constructed the haplotype block structure, and found H1-GGC and H2-CCA accounted for the most (total 91.8%) in T2D. The haplotype combination H1-H1-GGGGCC displayed a high risk for T2D (OR = 2.03, 95% CI = 1.12–3.72). By association analysis, we found the individuals carrying H1-H1-GGGGCC had significantly higher fasting plasma glucose and glycated hemoglobin. The haplotype H1-GGC presented a 6.74-fold higher promoter activity than H2-CCA, which was consistent with the correlation results. Furthermore, we clarified the mechanism whereby the C allele of both the P-MU1 and P-MU2 loci disrupted the signal transducer and activator of transcription 1 (STAT1) binding sites, leading to the attenuation of the SIRT2 transcription. Together, these data suggest that the linked haplotype GGC could be considered as a promising marker for T2D diagnosis and therapy assessment.
Funder
National Natural Science Foundation of China
Subject
Genetics (clinical),Genetics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献