Computational Cancer Cell Models to Guide Precision Breast Cancer Medicine

Author:

Cheng Lijun,Majumdar Abhishek,Stover Daniel,Wu Shaofeng,Lu YaoqinORCID,Li Lang

Abstract

Background: Large-scale screening of drug sensitivity on cancer cell models can mimic in vivo cellular behavior providing wider scope for biological research on cancer. Since the therapeutic effect of a single drug or drug combination depends on the individual patient’s genome characteristics and cancer cells integration reaction, the identification of an effective agent in an in vitro model by using large number of cancer cell models is a promising approach for the development of targeted treatments. Precision cancer medicine is to select the most appropriate treatment or treatments for an individual patient. However, it still lacks the tools to bridge the gap between conventional in vitro cancer cell models and clinical patient response to inhibitors. Methods: An optimal two-layer decision system model is developed to identify the cancer cells that most closely resemble an individual tumor for optimum therapeutic interventions in precision cancer medicine. Accordingly, an optimal grid parameters selection is designed to seek the highest accordance for treatment selection to the patient’s preference for drug response and in vitro cancer cell drug screening. The optimal two-layer decision system model overcomes the challenge of heterology data comparison between the tumor and the cancer cells, as well as between the continual variation of drug responses in vitro and the discrete ones in clinical practice. We simulated the model accuracy using 681 cancer cells’ mRNA and associated 481 drug screenings and validated our results on 315 breast cancer patients drug selection across seven drugs (docetaxel, doxorubicin, fluorouracil, paclitaxel, tamoxifen, cyclophosphamide, lapitinib). Results: Comparing with the real response of a drug in clinical patients, the novel model obtained an overall average accordance over 90.8% across the seven drugs. At the same time, the optimal cancer cells and the associated optimal therapeutic efficacy of cancer drugs are recommended. The novel optimal two-layer decision system model was used on 1097 patients with breast cancer in guiding precision medicine for a recommendation of their optimal cancer cells (30 cancer cells) and associated efficacy of certain cancer drugs. Our model can detect the most similar cancer cells for each individual patient. Conclusion: A successful clinical translation model (optimal two-layer decision system model) was developed to bridge in-vitro basic science to clinical practice in a therapeutic intervention application for the first time. The novel tool kills two birds with one stone. It can help basic science to seek optimal cancer cell models for an individual tumor, while prioritizing clinical drugs’ recommendations in practice. Tool associated platform website: We extended the breast cancer research to 32 more types of cancers across 45 therapy predictions.

Funder

National Institute of Health Research Foundation

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3