Comparative Analysis of Mouse Decidualization Models at the Molecular Level

Author:

Wang Chong,Zhao Miao,Zhang Wen-Qian,Huang Ming-Yu,Zhu Can,He Jia-Peng,Liu Ji-LongORCID

Abstract

The mouse is widely used to study decidualization and there are three well-established mouse models of decidualization, namely natural pregnancy decidualization (NPD), artificial decidualization (AD), and in vitro decidualization (IVD). However, the extent of similarity and difference between these models at the molecular level remains largely unknown. Here, we performed a comparative analysis using the RNA-seq approach. In the NPD model, which is thought to be the golden standard of mouse decidualization, we found a total of 5277 differentially expressed genes, with 3158 genes being up-regulated and 2119 genes being down-regulated. A total of 4294 differentially expressed genes were identified in the AD model: 1127 up-regulated genes and 3167 down-regulated genes. In comparison to NPD, 1977 genes were consistently expressed, whereas only 217 genes were inconsistently expressed, indicating that AD is a reliable model for mouse decidualization. In the IVD model, RNA-seq analysis revealed that 513 genes were up-regulated and 988 genes were down-regulated. Compared to NPD, 310 genes were consistently expressed, whereas 456 genes were inconsistently expressed. Moreover, although the decidualization marker Prl8a2 (prolactin family 8 subfamily a member 2) was up-regulated, the widely-used marker Alpl (alkaline phosphatase liver/bone/kidney) was down-regulated in the IVD model. Therefore, we suggest that the IVD model should be optimized to mimic NPD at the transcriptomic level. Our study contributes to an increase in the knowledge about mouse models of decidualization.

Funder

Guangdong Special Support Program

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3