Abstract
Coronary atherosclerosis is one of the major factors causing cardiovascular diseases. However, identifying the tipping point (predisease state of disease) and detecting early-warning signals of human coronary atherosclerosis for individual patients are still great challenges. The landscape dynamic network biomarkers (l-DNB) methodology is based on the theory of dynamic network biomarkers (DNBs), and can use only one-sample omics data to identify the tipping point of complex diseases, such as coronary atherosclerosis. Based on the l-DNB methodology, by using the metabolomics data of plasma of patients with coronary atherosclerosis at different stages, we accurately detected the early-warning signals of each patient. Moreover, we also discovered a group of dynamic network biomarkers (DNBs) which play key roles in driving the progression of the disease. Our study provides a new insight into the individualized early diagnosis of coronary atherosclerosis and may contribute to the development of personalized medicine.
Funder
The Natural Science Foundation of China
Subject
Genetics(clinical),Genetics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献