Investigation of Mating Pheromone–Pheromone Receptor Specificity in Lentinula edodes

Author:

Kim Sinil,Ha Byeongsuk,Kim Minseek,Ro Hyeon-SuORCID

Abstract

The B mating-type locus of Lentinula edodes, a representative edible mushroom, is highly complex because of allelic variations in the mating pheromone receptors (RCBs) and the mating pheromones (PHBs) in both the Bα and Bβ subloci. The complexity of the B mating-type locus, five Bα subloci with five alleles of RCB1 and nine PHBs and three Bβ subloci with 3 alleles of RCB2 and five PHBs, has led us to investigate the specificity of the PHB–RCB interaction because the interaction plays a key role in non-self-recognition. In this study, the specificities of PHBs to RCB1-2 and RCB1-4 from the Bα sublocus and RCB2-1 from the Bb sublocus were investigated using recombinant yeast strains generated by replacing STE2, an endogenous yeast mating pheromone receptor, with the L. edodes RCBs. Fourteen synthetic PHBs with C-terminal carboxymethylation but without farnesylation were added to the recombinant yeast cells and the PHB–RCB interaction was monitored by the expression of the FUS1 gene—a downstream gene of the yeast mating signal pathway. RCB1-2 (Bα2) was activated by PHB1 (4.3-fold) and PHB2 (2.1-fold) from the Bα1 sublocus and RCB1-4 (Bα4) was activated by PHB5 (3.0-fold) and PHB6 (2.7-fold) from the Bα2 sublocus and PHB13 (3.0-fold) from the Bα5 sublocus. In particular, PHB3 from Bβ2 and PHB9 from Bβ3 showed strong activation of RCB2-1 of the Bβ1 sublocus by 59-fold. The RCB–PHB interactions were confirmed in the monokaryotic S1–10 strain of L. edodes by showing increased expression of clp1, a downstream gene of the mating signal pathway and the occurrence of clamp connections after the treatment of PHBs. These results indicate that a single PHB can interact with a non-self RCB in a sublocus-specific manner for the activation of the mating pheromone signal pathways in L. edodes.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3