An Ensemble Approach to Predict the Pathogenicity of Synonymous Variants

Author:

Ranganathan Ganakammal Satishkumar,Alexov EmilORCID

Abstract

Single-nucleotide variants (SNVs) are a major form of genetic variation in the human genome that contribute to various disorders. There are two types of SNVs, namely non-synonymous (missense) variants (nsSNVs) and synonymous variants (sSNVs), predominantly involved in RNA processing or gene regulation. sSNVs, unlike missense or nsSNVs, do not alter the amino acid sequences, thereby making challenging candidates for downstream functional studies. Numerous computational methods have been developed to evaluate the clinical impact of nsSNVs, but very few methods are available for understanding the effects of sSNVs. For this analysis, we have downloaded sSNVs from the ClinVar database with various features such as conservation, DNA-RNA, and splicing properties. We performed feature selection and implemented an ensemble random forest (RF) classification algorithm to build a classifier to predict the pathogenicity of the sSNVs. We demonstrate that the ensemble predictor with selected features (20 features) enhances the classification of sSNVs into two categories, pathogenic and benign, with high accuracy (87%), precision (79%), and recall (91%). Furthermore, we used this prediction model to reclassify sSNVs with unknown clinical significance. Finally, the method is very robust and can be used to predict the effect of other unknown sSNVs.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3