Transcriptomic Profiling of DAF-7/TGFβ Pathway Mutants in C. elegans

Author:

Hu Muhan,Crossman DavidORCID,Prasain Jeevan K.,Miller Michael A.,Serra Rosa A.

Abstract

The transforming growth factor beta superfamily encompasses a large family of ligands that are well conserved across many organisms. They are regulators of a number of physiological and pathological processes. The model nematode Caenorhabditis elegans has been instrumental in identifying key components of the transforming growth factor beta (TGFβ) pathway. In C. elegans, the TGFβ homolog DAF-7 signals through the DAF-1 Type I and DAF-4 Type II receptors to phosphorylate downstream R-SMADs DAF-8 and DAF-14. These R-SMADs translocate into the nucleus to inhibit Co-SMAD DAF-3. Many of the roles of the canonical DAF-7 pathway, involving both DAF-1 and DAF-3, have been identified using targeted genetic studies. Few have assessed the global transcriptomic changes in response to these genes, especially in adult animals. In this study, we performed RNA sequencing on wild type, daf-1, and daf-1; daf-3 adult hermaphrodites. To assess the overall trends of the data, we identified differentially expressed genes (DEGs) and performed gene ontology analysis to identify the types of downstream genes that are differentially expressed. Hierarchical clustering showed that the daf-1; daf-3 double mutants are transcriptionally more similar to wild type than daf-1 mutants. Analysis of the DEGs showed a disproportionally high number of genes whose expression is increased in daf-1 mutants, suggesting that DAF-1 acts as a general repressor of gene expression in wild type animals. Gene ontology analysis of the DEGs produced many significantly enriched terms, including Molting Cycle, Response to Topologically Incorrect Protein, and Response to Biotic Stimulus. Understanding the direct and indirect targets of the DAF-7 TGFβ pathway through this RNA-seq dataset can provide insight into novel roles of the multifunctional signaling pathway, as well as identify novel genes that may participate in previously reported functions of TGFβ signaling.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3