Genotyping by RAD Sequencing Analysis Assessed the Genetic Distinctiveness of Experimental Lines and Narrowed down the Genomic Region Responsible for Leaf Shape in Endive (Cichorium endivia L.)

Author:

Patella Alice,Palumbo FabioORCID,Ravi Samathmika,Stevanato PiergiorgioORCID,Barcaccia GianniORCID

Abstract

The characterization of genetic diversity in elite breeding stocks is crucial for the registration and protection of new varieties. Moreover, experimental population structure analysis and information about the genetic distinctiveness of commercial materials are essential for crop breeding programs. The purpose of our research was to assess the genetic relationships of 32 endive (Cichorium endivia L.) breeding lines, 18 from var. latifolium (escarole) and 14 from var. crispum (curly), using heterologous Cichorium intybus-derived simple sequence repeats (SSR) markers and single-nucleotide polymorphisms (SNP) markers. We found that 14 out of 29 SSR markers were successfully amplified, but only 8 of them were related to polymorphic loci. To overcome the limitation of the low number of informative SSR marker loci, an alternative SNP-based approach was employed. The 4621 SNPs produced by a restriction site-associated DNA marker sequencing approach were able to fully discriminate the 32 endive accessions; most importantly, as many as 50 marker loci were found to distinguish the curly group from the escarole group. Interestingly, 24 of the marker loci mapped within a peripheral segment of chromosome 8 of lettuce (Lactuca sativa L.), spanning a chromosomal region of 49.6 Mb. Following Sanger sequencing-based validation, three genes were determined to carry nonsynonymous SNPs, and one of them matched a putative ortholog of AtELP1, subunit 1 of the Elongator complex. Considering that several previously characterized Elongator complex subunit mutants exhibited elongated and/or curly leaf phenotypes, this gene should be taken into consideration for a better understanding of the underlying mechanism controlling leaf shape in endive.

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3