ShadowCaster: Compositional Methods under the Shadow of Phylogenetic Models to Detect Horizontal Gene Transfers in Prokaryotes

Author:

Sánchez-Soto Daniela,Agüero-Chapin GuillerminORCID,Armijos-Jaramillo VinicioORCID,Perez-Castillo YunierkisORCID,Tejera Eduardo,Antunes AgostinhoORCID,Sánchez-Rodríguez Aminael

Abstract

Horizontal gene transfer (HGT) plays an important role for evolutionary innovations within prokaryotic communities and is a crucial event for their survival. Several computational approaches have arisen to identify HGT events in recipient genomes. However, this has been proven to be a complex task due to the generation of a great number of false positives and the prediction disagreement among the existing methods. Phylogenetic reconstruction methods turned out to be the most reliable ones, but they are not extensible to all genes/species and are computationally demanding when dealing with large datasets. In contrast, the so-called surrogate methods that use heuristic solutions either based on nucleotide composition patterns or phyletic distribution of BLAST hits can be applied easily to the genomic scale, but they fail in identifying common HGT events. Here, we present ShadowCaster, a hybrid approach that sequentially combines nucleotide composition-based predictions by support vector machines (SVMs) under the shadow of phylogenetic models independent of tree reconstruction, to improve the detection of HGT events in prokaryotes. ShadowCaster successfully predicted close and distant HGT events in both artificial and bacterial genomes. ShadowCaster detected HGT related to heavy metal resistance in the genome of Rhodanobacter denitrificans with higher accuracy than the most popular state-of-the-art computational approaches, encompassing most of the predicted cases made by other methods. ShadowCaster is released at the GitHub platform as an open-source software under the GPLv3 license.

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3