Identification and Validation of Reference Genes for RT-qPCR Analysis in Switchgrass under Heavy Metal Stresses

Author:

Zhao Junming,Zhou Man,Meng Yu

Abstract

Switchgrass (Panicum Virgatum L.) has been recognized as the new energy plant, which makes it ideal for the development of phytoremediation on heavy metal contamination in soils with great potential. This study aimed to screen the best internal reference genes for the real-time quantitative PCR (RT-qPCR) in leaves and roots of switchgrass for investigating its response to various heavy metals, such as cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr), and arsenic (As). The stability of fourteen candidate reference genes was evaluated by BestKeeper, GeNorm, NormFinder, and RefFinder software. Our results identified U2AF as the best reference gene in Cd, Hg, Cr, and As treated leaves as well as in Hg, Pb, As, and Cr stressed root tissues. In Pb treated leaf tissues, 18S rRNA was demonstrated to be the best reference gene. CYP5 was determined to be the optimal reference gene in Cd treated root tissues. The least stable reference gene was identified to be CYP2 in all tested samples except for root tissues stressed by Pb. To further validate the initial screening results, we used the different sets of combinatory internal reference genes to analyze the expression of two metal transport associated genes (PvZIP4 and PvPDB8) in young leaves and roots of switchgrass. Our results demonstrated that the relative expression of the target genes consistently changed during the treatment when CYP5/UBQ1, U2AF/ACT12, eEF1a/U2AF, or 18S rRNA/ACT12 were combined as the internal reference genes. However, the time-dependent change pattern of the target genes was significantly altered when CYP2 was used as the internal reference gene. Therefore, the selection of the internal reference genes appropriate for specific experimental conditions is critical to ensure the accuracy and reliability of RT-qPCR. Our findings established a solid foundation to further study the gene regulatory network of switchgrass in response to heavy metal stress.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3