Coarse-to-Fine Localization for Detecting Misalignment State of Angle Cocks

Author:

Lei Hengda1,Cao Li1ORCID,Li Xiuhua2

Affiliation:

1. School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China

2. Wuhan Huamu Information Technology Co., Ltd., Wuhan 430070, China

Abstract

The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed state and non-closed state and treats them as normal and abnormal states, respectively. Since the non-closed state includes the fully open state and the misalignment state, while the latter may lead to brake abnormally, it is very necessary to further detect the misalignment state from the non-closed state. In this paper, we propose a coarse-to-fine localization method to achieve this goal. Firstly, the localization result of an angle cock is obtained by using the YOLOv4 model. Following that, the SVM model combined with the HOG feature of the localization result of an angle cock is used to further obtain its handle localization result. After that, the HOG feature of the sub-image only containing the handle localization result continues to be used in the SVM model to detect whether the angle cock is in the non-closed state or not. When the angle cock is in the non-closed state, its handle curve is fitted by binarization and window search, and the tilt angle of the handle is calculated by the minimum bounding rectangle. Finally, the misalignment state is detected when the tilt angle of the handle is less than the threshold. The effectiveness and robustness of the proposed method are verified by extensive experiments, and the accuracy of misalignment state detection for angle cocks reaches 96.49%.

Funder

Research Funding of Wuhan Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3