The Downregulation of Both Giant HERCs, HERC1 and HERC2, Is an Unambiguous Feature of Chronic Myeloid Leukemia, and HERC1 Levels Are Associated with Leukemic Cell Differentiation

Author:

Ali Muhammad Shahzad,Magnati Stefano,Panuzzo Cristina,Cilloni DanielaORCID,Saglio Giuseppe,Pergolizzi BarbaraORCID,Bracco EnricoORCID

Abstract

Large HERC E3 ubiquitin ligase family members, HERC1 and HERC2, are staggeringly complex proteins that can intervene in a wide range of biological processes, such as cell proliferation, DNA repair, neurodevelopment, and inflammation. Therefore, mutations or dysregulation of large HERCs is associated with neurological disorders, DNA repair defects, and cancer. Though their role in solid tumors started to be investigated some years ago, our knowledge about HERCs in non-solid neoplasm is greatly lagging behind. Chronic Myeloid Leukemia (CML) is a model onco-hematological disorder because of its unique and unambiguous relation between genotype and phenotype due to a single genetic alteration. In the present study, we ascertained that the presence of the BCR-ABL fusion gene was inversely associated with the expression of the HERC1 and HERC2 genes. Upon the achievement of remission, both HERC1 and HERC2 mRNAs raised again to levels comparable to those of the healthy donors. Additionally, our survey unveiled that their gene expression is sensitive to different Tyrosine Kinases Inhibitors (TKIs) in a time-dependent fashion. Interestingly, for the first time, we also observed a differential HERC1 expression when the leukemic cell lines were induced to differentiate towards different lineages revealing that HERC1 protein expression is associated with the differentiation process in a lineage-specific manner. Taken together, our findings suggest that HERC1 might act as a novel potential player in blood cell differentiation. Overall, we believe that our results are beneficial to initiate exploring the role/s of large HERCs in non-solid neoplasms.

Funder

Italian Association for Cancer Research

University of Turin

AIRBB

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3