Use of a Deep Learning Approach for the Sensitive Prediction of Hepatitis B Surface Antigen Levels in Inactive Carrier Patients

Author:

Kamimura HiroteruORCID,Nonaka HirofumiORCID,Mori Masaya,Kobayashi Taichi,Setsu ToruORCID,Kamimura KenyaORCID,Tsuchiya AtsunoriORCID,Terai Shuji

Abstract

Deep learning is a subset of machine learning that can be employed to accurately predict biological transitions. Eliminating hepatitis B surface antigens (HBsAgs) is the final therapeutic endpoint for chronic hepatitis B. Reliable predictors of the disappearance or reduction in HBsAg levels have not been established. Accurate predictions are vital to successful treatment, and corresponding efforts are ongoing worldwide. Therefore, this study aimed to identify an optimal deep learning model to predict the changes in HBsAg levels in daily clinical practice for inactive carrier patients. We identified patients whose HBsAg levels were evaluated over 10 years. The results of routine liver biochemical function tests, including serum HBsAg levels for 1, 2, 5, and 10 years, and biometric information were obtained. Data of 90 patients were included for adaptive training. The predictive models were built based on algorithms set up by SONY Neural Network Console, and their accuracy was compared using statistical analysis. Multiple regression analysis revealed a mean absolute percentage error of 58%, and deep learning revealed a mean absolute percentage error of 15%; thus, deep learning is an accurate predictive discriminant tool. This study demonstrated the potential of deep learning algorithms to predict clinical outcomes.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3