Abstract
In this paper, a power system restoration study following a massive or complete blackout was performed. The power system restoration process from a complete shutdown system without the operating generation and load starts with energizing primary restorative transmission systems. During this primary restoration process, unexpected over-voltage may occur due to nonlinear interaction between the unloaded transformer and the transmission system. This is known as the harmonic resonance phenomenon that may cause the burning out of a transformer or other devices. So far, harmonic resonances have been reported in some extra-high voltage systems around the world. Since the harmonic resonance originates from the nonlinear characteristics of the power system components, it is very difficult to predict the occurrence of this phenomenon. This paper reports the analyses of the harmonic resonance that can occur in the Korean power system. In addition, through calculating the required buffer load compared to the length of the line, a solution that changes the length of the restoration path impedance considering the specificity of the Korean system was presented. The various analyses of harmonic overvoltage, including methodologies that are used internationally as comparison groups, are provided based on PSCAD/EMTDC simulations.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Korea Electric Power Corporation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献