Exergy Footprint Assessment of Cotton Textile Recycling to Polyethylene

Author:

Plesu Popescu AlexandraORCID,Cheah Yen KeongORCID,Varbanov Petar SabevORCID,Klemeš Jiří JaromírORCID,Kabli Mohammad Reda,Shahzad Khurram

Abstract

Circular economy implementations tend to decrease the human pressure on the environment, but not all produce footprint reductions. That observation brings the need for tools for the evaluation of recycling processes. Based on the Exergy Footprint concept, the presented work formulates a procedure for its application to industrial chemical recycling processes. It illustrates its application in the example of cotton waste recycling. This includes the evaluation of the entire process chain of polyethylene synthesis by recycling cotton waste. The chemical recycling stages are identified and used to construct the entire flowsheet that eliminates the cotton waste and its footprints at the expense of additional exergy input. The exergy performance of the process is evaluated. The identified exergy assets and liabilities are 138 MJ/kg ethylene and 153 MJ/kg ethylene, reducing the Exergy Footprint by 75% and the greenhouse gas footprint by 43% compared to the linear pattern of polyethylene production. The exergy requirements for producing raw cotton constitute a large fraction of the liabilities, while the polyethylene degradation provides the main asset in the reduction of the Exergy Footprint.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3