Author:
Yin Yong,Xiao Yuhua,Wang Chengliang,Yang Qingsheng,Jia Yahui,Liao Zhijuan
Abstract
Due to the effects of splitting frequency and cross coupling, the resonant frequency of the WPT system usually deviates from the given frequency band, and the system operating at the given frequency band suffers a very low output power. Ensuring that electric vehicle wireless power transfer (EV-WPT) systems operate at a resonant state is the prerequisite for efficient energy transfer. For this purpose, a novel design method by manipulating the eigenstate parameters is proposed in this paper. The proposed system can make a EV-WPT system with arbitrary coil successfully to resonate at any given bands, not just a single band. Therefore, the method designed in this article cannot only eliminate the problem of low power caused by frequency deviation, but also realize the application requirements of multiple frequency bands. Firstly, this article establishes an accurate state space model of an n-coil fully coupled EV-WPT system, and after that, the analytical current response on each circuit is derived. Based on that, a detailed frequency spectrum analysis is presented, along with several essential spectrum parameters’ derivations, including center frequencies and bandwidths. Then, with the center frequency and bandwidth as the design indexes, a novel methodology of designing to make EV-WPT systems achieve resonant-state at arbitrary given bands is derived. Finally, simulation and experimental verification are carried out. Simulation and experimental results show that whether it is a single-band or multi-band system, the accuracy of the value under designed resonant frequency is less than 0.01, which can effectively eliminate the frequency deviation phenomenon and obtain the maximum power output at the given frequency band.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献