Characteristic Analysis and Experimental Verification of Electromagnetic and Vibration/Noise Aspects of Fractional-Slot Concentrated Winding IPMSMs of e-Bike

Author:

Lee Young-GeunORCID,Bang Tae-KyoungORCID,Lee Jeong-In,Woo Jong-HyeonORCID,Jo Sung-Tae,Choi Jang-Young

Abstract

In this study, we performed the electromagnetic and mechanical characteristic analyses of an 8-pole 12-slot interior permanent magnet synchronous motor (IPMSM). Permanent magnet synchronous motors are classified into surface permanent magnet synchronous motor and interior permanent magnet synchronous motors according to the type of rotor. The IPM type is advantageous for high-speed operation because of the structure where the permanent magnet is embedded inside the rotor, and it has the advantage of having a high output density by generating not only the magnetic torque of the permanent magnet, but also the reluctance torque. However, such a motor has more vibration/noise sources than other types, owing to changes in reluctance. The sources of motor noise/vibration can be broadly classified into electromagnetic, mechanical, and aerodynamic sources. Electromagnetic noise sources are classified into electromagnetic excitation sources, torque pulsations, and unbalanced magnetic forces (UMFs). Vibration and noise cause machine malfunctions and affect the entire system. Therefore, it is important to analyze the electromagnetic vibration source. In this study, the electromagnetic characteristics of an IPMSM were analyzed through the finite element method to derive the UMF. Vibration and noise analyses were performed by electromagnetic–mechanical coupling analysis, and vibration and noise characteristics based on electromagnetic noise sources were analyzed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3