Analysis of Indoor Air Pollutants and Guidelines for Space and Physical Activities in Multi-Purpose Activity Space of Elementary Schools

Author:

Lee Yeo-Kyung,Kim Young Il

Abstract

Owing to the recent increase in the number of warning reports and alerts on the dangers of fine dusts, there has been an increasing concern over fine dusts among citizens. In spaces with poor ventilation, the occupants are forced to open the window to initiate natural ventilation via the direct introduction of the outside air; however, this may pose a serious challenge if the external fine-dust concentration is high. The lack of natural ventilation increases the indoor carbon dioxide (CO2) concentration, thus necessitating the installation of mechanical ventilation systems. This study analyzed the frequency of the application of mechanical ventilation systems in the Multi-purpose activity space of elementary schools, which are spaces where children require a higher indoor air quality than adults owing to the rapid increase in the CO2 concentration of the Multi-purpose activity space during activities. In addition, the architectural and equipment factors of the Multi-purpose activity spaces of nine elementary schools were characterized. The results revealed that five out of the nine elementary schools installed mechanical ventilation systems, whereas the remaining four schools installed jet air turnover systems. The indoor air quality of the Multi-purpose activity space of D elementary school, which had the minimum facility volume among the schools investigated in this study (564.2 m3), with up to 32 participants for each activity, was investigated. The results revealed that the ultrafine-dust (PM2.5) concentration of the facility was as high as 4.75 µg/m3 at a height of 1.2 m, and the CO2 concentration was as high as 3183 ppm. The results of the analysis of three elementary schools with different volumes were compared and analyzed using CONTAM simulation. This study determined the required volume per occupant and the optimum number of occupants for a given volume and presented guidelines for the optimum number of occupants, activities, and volume to reduce the high concentration of pollutants in the analyzed Multi-purpose activity space. The guideline proposed in this study is aimed at maintaining the CO2 concentration of the Multi-purpose activity space below 1000 ppm, as prescribed by the Indoor Air Quality Control in Public-Use Facilities, Etc. Act in South Korea.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference60 articles.

1. Fine, Ultrafine, and Yellow Dust: Emerging Health Problems in Korea

2. Fine Dust Data by Year in Chinahttps://aqicn.org/city/hongkong/kr

3. 2019 World Air Quality Report,2020

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3