A Scalable Control Strategy for CHB Converters in Photovoltaic Applications

Author:

Pérez Mayo Álvaro,Galarza Ainhoa,López Barriuso Asier,Vadillo Javier

Abstract

Renewable energy sources are becoming more relevant in recent decades in power generation, leading to investment in developing efficient systems. Specifically, in photovoltaic energy, modular converters are attracting interest since their characteristics enable them to work at high voltage and optimize the generated energy. However, the control strategies found the literature limit the scalability potential of modular converters. The main aim of this paper is to propose a scalable control strategy for a grid-tied CHB (Cascaded H-Bridge) converter for large-scale photovoltaic power plants. The control proposed is able to take full advantage of converter scalability and modularity, being based on the parameters needed for bipolar sinusoidal PWM (Pulse Width Modulation), and thus reducing the calculus required and simplifying its implementation. Power imbalances are overcome including the zero-sequence vector injection to allow power exchange between phases. Furthermore, the parameter used for power factor control has been discretized and discretization time analysis shows that the control strategy is stable and does not require a high-speed communication channel. For validation purposes, simulations are conducted on a downsized 12 H-bridge model.

Funder

Basque Government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 6h ± 1 Repetitive Scheme for the Three-Phase CHB Seven-Level Converter Used in an APF Application;IEEE Journal of Emerging and Selected Topics in Power Electronics;2024-04

2. Model-based control strategy for the three-phase n-level CHB multilevel converter;International Journal of Electrical Power & Energy Systems;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3