Describing the Material Behavior of Steel and Carbon Fiber Reinforced Composites Using a Combined Damage-Plasticity Approach

Author:

Rehra Jan,Andriß ChristianORCID,Schmeer SebastianORCID,Breuer Ulf P.ORCID

Abstract

Metal fiber hybrids (MFH) exhibit outstanding mechanical properties. They combine the advantages of ductile metallic materials with the well-known advantages of classical glass or carbon fibers in polymer matrices. Previous research has shown that these hybrid material concepts can improve structural integrity and energy absorption while maintaining their excellent weight-specific mechanical properties as well as allowing a wider range of multifunctional applications. In today’s component design process, simulation is a powerful tool for engineers to exploit the full mechanical potential of the material used. However, describing the material behavior including its multifunctional usability in numerically aided design processes of components is currently one of the major challenges for MFH. Against this background, this work focuses on the development and evaluation of a description method for MFH in the finite element analysis (FEA). A steel and carbon fiber reinforced epoxy resin (SCFRP) with hybridization at the laminate level is chosen as the reference material. To describe the behavior of unidirectional steel fiber reinforced plastic (SFRP) layers, a material model combining an orthotropic damage model and a 1D-plasticity model is proposed and implemented as a user-defined subroutine for LS-Dyna. In addition, SCFRP laminates are manufactured, tested under tensile loading, and used to parameterize the material models and to validate the description method for SCFRP. In this study, it is shown that the description method in combination with the newly developed material model is able to describe the complex failure mechanism of SCFRP. In particular, with respect to the material behavior up to the failure of the carbon fibers, a very good mapping accuracy can be achieved. Strain localization effects occur in both numerically predicted and experimentally measured post-failure behavior. Therefore, it could be concluded that the accuracy of the numerical predictions strongly depends on the geometric resolution of the discretization.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference54 articles.

1. Mechanical Properties and Failure Behavior of Cord/Rubber Composites

2. Impact Damage Models for Steel Fibre Reinforced Composite Materials;Van den Abeele;Ph.D. Thesis,2006

3. Experimentelle Und Numerische Untersuchung Des Deformations-Und Bruchverhaltens von Edelstahltextilverstärkten Kunststoffen Und LFT-Werkstoffen;Meichsner;Z. Kunstst. J. Plast. Technol.,2008

4. Metal Fibre Reinforced Composite – Potentialities and Tasks

5. Properties and failure behavior of hybrid wire mesh/carbon fiber reinforced thermoplastic composites under quasi-static tensile load

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3