Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study

Author:

Morales Manuel,Diemer ArnaudORCID

Abstract

Industrial symbiosis (IS) is presented as an inter-firm organizational strategy with the aim of social innovation that targets material and energy flow optimization but also structural sustainability. In this paper, we present geographical proximity as the theoretical framework used to analyse industrial symbiosis through a methodology based on System Dynamics and the underpinning use of Causal Loop Diagrams, aiming to identify the main drivers and hindrances that reinforce or regulate the industrial symbiosis’s sustainability. The understanding of industrial symbiosis is embedded in a theoretical framework that conceptualizes industry as a complex ecosystem in which proximity analysis and stakeholder theory are determinant, giving this methodology a comparative advantage over descriptive statistical forecasting, because it is able to integrate social causal rationality when forecasting attractiveness in a region or individual firm’s potential. A successful industrial symbiosis lasts only if it is able to address collective action problems. The stakeholders’ influence then becomes essential to the complex understanding of this institution, because by shaping individual behaviour in a social context, industrial symbiosis provides a degree of coordination and cooperation in order to overcome social dilemmas for actors who cannot achieve their own goals alone. The proposed narrative encourages us to draw up scenarios, integrating variables from different motivational value dimensions: efficiency, resilience, cooperation and proximity in the industrial symbiosis. We use the Dunkirk case study to explain the role of geographical systems analysis, identifying loops that reinforce or regulate the sustainability of industrial symbiosis and identifying three leverage points: “Training, workshop and education programs for managers and directors,” “Industrial symbiosis governance” and “Agreements in waste regulation conflicts.” The social dynamics aims for the consolidation of the network, through stakeholder interaction and explains the local success and failure of every industrial symbiosis through a system dynamics analysis.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3