Optimization of Concrete Mixture Design Using Adaptive Surrogate Model

Author:

Cen Xiaoqian,Wang Qingyuan,Shi XiaoshuangORCID,Su Yan,Qiu Jingsi

Abstract

The increase in urban construction in China has been accompanied by increasing concrete output, which has reached 2250 million m3 in recent years, ranked as the highest in the world. Consequentially, its environmental burden is significant in terms of resource use and carbon emissions. An adaptive surrogate model based on an extended radial basis function and adaptive sampling method was used to optimize the design of a concrete mixture in order to reduce its CO2 emissions and cost. The adaptive sampling method based on the multi-island genetic algorithm was adopted in order to improve the adaptive capability and accuracy of the surrogate model by selecting the proper sample size and ensuring uniform distribution of the sample points in the designed space. Three types of concrete with different strength, that is, C70, C40 and C30, were optimized by controlling the amount of fly ash and phosphorous slag in the samples. The optimized results showed that fly ash and phosphorous slag have a significant influence on the CO2 emissions of concrete and optimized concrete’s cost, while CO2 emissions were less than that of the reference samples. Therefore, the optimal mixture is with great significance to reduce the carbon emission of concrete, which also has implications for decreasing the environmental burden of concrete. In this way, we can optimize concrete of different strength to reduce carbon dioxide emission.

Funder

Program for Changjiang Scholars and Innovative Research Team

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3