Feedback Control Strategy for Transient Stability Application

Author:

Ojetola Samuel T.ORCID,Wold JoshORCID,Trudnowski DanielORCID

Abstract

Power systems are subjected to a wide range of disturbances during daily operations. Severe disturbances, such as a loss of a large generator, a three-phase bolted fault on a generator bus, or a loss of a transmission line, can lead to the loss of synchronism of a generator or group of generators. The ability of a power system to maintain synchronism during the few seconds after being subjected to a severe disturbance is known as transient stability. Most of the modern methods of controlling transient stability involve special protection schemes or remedial action schemes. These special protection schemes sense predetermined system conditions and take corrective actions, such as generator tripping or generation re-dispatch, in real time to maintain transient stability. Another method is the use of a real-time feedback control system to modulate the output of an actuator in response to a signal. This paper provides a fundamental evaluation of the use of feedback control strategies to improve transient stability in a power system. An optimal feedback control strategy that modulates the real power injected and absorbed by distributed energy-storage devices is proposed. Its performance is evaluated on a four-machine power system and on a 34-machine reduced-order model of the Western North American Power System. The result shows that the feedback control strategy can increase the critical fault clearing time by 60%, thereby improving the transient stability of the power system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. Power System Stability and Control;Kundur,1994

2. Definition and Classification of Power System Stability;Kundur;IEEE Trans. Power Syst.,2004

3. Study on wide area measurement system based transient stability control for power system

4. Implementation and testing of remedial action schemes for real-time transient stability studies;Mahmoudi;Proceedings of the IEEE Power & Energy Society General Meeting,2017

5. The acceleration trend relay for generator stabilization at Colstrip

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3