Abstract
The influences of curing pressure on the physical and mechanical property development of oil well cement during long-term curing were studied. Five silica-enriched cement slurries designed without and with reinforcement materials (latex fiber and nano-graphene) were autoclaved at 200 °C under two different pressures. The low pressure (50 MPa) curing was conducted for 2, 60, 90 and 180 days; the high pressure (150 MPa) curing was conducted for 2 and 360 days. The physical and mechanical properties of set cement were characterized by compressive strength, Young’s modulus, and water/gas permeability; the mineral composition and microstructure were determined by X-ray diffraction, mercury intrusion porosimetry, thermogravimetry and scanning electron microscope. Test results showed that high pressure (150 MPa) curing led to a more compact microstructure, which reduced the rate of strength retrogression in the long term. Samples with reinforcement materials, especially the latex fiber, showed higher compressive strength, Young’s modulus and lower permeability during long-term curing at both pressures.
Funder
National Natural Science Foundation of China
China University of Petroleum, East China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献