Improving Transient Stability of a Synchronous Generator Using UIPC with a Unified Control Scheme

Author:

Ghafouri Saeed,Hajiahmadi Mohammad Ali,Firouzi Mehdi,Gharehpetian Gevork B.ORCID,Mobayen SalehORCID,Skruch Paweł

Abstract

In this paper, the Unified Interphase Power Controller (UIPC) is utilized to protect the synchronous generator in case of faults occurring in the transmission system. The UIPC not only maintains the generator’s stability by keeping its load angle within safe operational limits but also prevents high-amplitude currents from flowing through the stator windings. This also allows for more loading on the generator without compromising the system’s stability. Moreover, utilization of the UIPC improves the LVRT capability of the generator by injecting reactive power at the faulted location. Additionally, a novel unified control scheme is proposed for the UIPC that enhances its performance by omitting the necessity of fault detection algorithms. To evaluate the performance of the proposed controller and the efficacy of the UIPC in protecting the synchronous generator under the faults, simulations have been conducted in a MATLAB/Simulink environment. A test grid was developed comprising a synchronous generator, transmission line model, UIPC, and an infinite grid representing the Point of Common Coupling (PCC), and three fault scenarios have been implemented in the transmission system. The comparative analysis of simulation results demonstrates the capability and efficacy of UIPC in isolating the synchronous generator from the faulted location, which in turn not only enhances transient stability of the generator, but also protects generator windings from detrimental faults currents. Moreover, according to the results, UIPC also contributes to recovering the voltage dip of the fault location via injecting reactive power.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microgrids: Characteristics and Emerging Challenges;2024 11th Iranian Conference on Renewable Energy and Distribution Generation (ICREDG);2024-03-06

2. Peak Shaving Approach of Distribution Network;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3