Abstract
In this paper, the Unified Interphase Power Controller (UIPC) is utilized to protect the synchronous generator in case of faults occurring in the transmission system. The UIPC not only maintains the generator’s stability by keeping its load angle within safe operational limits but also prevents high-amplitude currents from flowing through the stator windings. This also allows for more loading on the generator without compromising the system’s stability. Moreover, utilization of the UIPC improves the LVRT capability of the generator by injecting reactive power at the faulted location. Additionally, a novel unified control scheme is proposed for the UIPC that enhances its performance by omitting the necessity of fault detection algorithms. To evaluate the performance of the proposed controller and the efficacy of the UIPC in protecting the synchronous generator under the faults, simulations have been conducted in a MATLAB/Simulink environment. A test grid was developed comprising a synchronous generator, transmission line model, UIPC, and an infinite grid representing the Point of Common Coupling (PCC), and three fault scenarios have been implemented in the transmission system. The comparative analysis of simulation results demonstrates the capability and efficacy of UIPC in isolating the synchronous generator from the faulted location, which in turn not only enhances transient stability of the generator, but also protects generator windings from detrimental faults currents. Moreover, according to the results, UIPC also contributes to recovering the voltage dip of the fault location via injecting reactive power.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Microgrids: Characteristics and Emerging Challenges;2024 11th Iranian Conference on Renewable Energy and Distribution Generation (ICREDG);2024-03-06
2. Peak Shaving Approach of Distribution Network;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23