An Equivalent Model of Wind Farm Based on Multivariate Multi-Scale Entropy and Multi-View Clustering

Author:

Han Ji,Li Li,Song Huihui,Liu Meng,Song Zongxun,Qu YanbinORCID

Abstract

Wind farm (WF) equivalence is an effective method to achieve accurate and efficient simulation of large-scale WF. Existing equivalent models are generally suitable for one certain or very few scenarios, and have difficulty reflecting the multiple aspects of dynamic processes of WF. Aiming at these problems, this paper proposes an equivalent model of WF based on multivariate multi-scale entropy (MMSE) and multi-view clustering. Firstly, the influence of the factors on the dynamic process of the wind turbine (WT) is discussed, including control mode, wind speed and its wake effect, resistance of crowbar resistor and so on. The relationship between these factors and the dynamic equivalence of WF is analyzed. Secondly, an overview of MMSE is given, and the applicability of MMSE on WF equivalence is analyzed. On this basis, this paper proposes the extraction process of a WT clustering indicator using MMSE. Then, the multi-view fuzzy C means (MV-FCM) algorithm is used for the clustering of WTs, and the equivalent model of WF is obtained after calculating the equivalent parameters. Finally, the IEEE14 power system including WF is simulated. The results show that the equivalent model could be applied to dynamic process simulation in various fault scenarios of power systems, and the error is small when the cluster number is 4. Compared with the detailed model, the simulation time of the WF equivalent model proposed in this paper is shortened by 86%, and the simulation accuracy is improved by about 44% compared with the comparative model.

Funder

National Natural Science Foundation of China

Bureau of Science and Technology of Shandong Province, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. GWEC Global Wind Report 2022,2022

2. Analysis on equivalent model for wind farms;Ding;Smart Grid.,2014

3. Comprehensive overview of grid interfaced wind energy generation systems;Mahela;Renew. Sustain. Energy Rev.,2016

4. A survey of dynamic equivalent modeling for wind farm;Zou;Renew. Sustain. Energy Rev.,2014

5. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds;Fernandez;Energy Convers. Manag.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3