Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges

Author:

Amry Youssef,Elbouchikhi ElhoussinORCID,Le Gall Franck,Ghogho MounirORCID,El Hani Soumia

Abstract

With the need for more environmentally friendly transportation and the wide deployment of electric and plug-in hybrid vehicles, electric vehicle (EV) charging stations have become a major issue for car manufacturers and a real challenge for researchers all over the world. Indeed, the high cost of battery energy storage, the limited EV autonomy and battery lifespan, the battery charging time, the deployment cost of a fast charging infrastructure, and the significant impact on the power grid are the origin of several research projects focused on advanced power electronics topologies and the optimization of the EV charging stations in terms of power transfer and geographical location. Three charging levels can be distinguished, which differ in terms of output power and charging time. The higher the level of charging, the faster the charging process, as more power is delivered to the vehicle at the expense of power quality issues and disturbances. Moreover, three types of charging systems can be distinguished, which are inductive recharging (contactless power transfer), conductive charging systems, and battery swapping. Additionally, EVs encompass fuel cell (FC) EVs, which uses hydrogen as primary energy resources, which is nowadays under extensive research activities in academia and industry. This review paper aims at presenting a state of the art review of major advances in power electronics architectures for EVs traction drives, and battery-based EVs charging stations. Specifically, the focus is made on light-duty electric vehicles drivetrain power electronics and charging stations specifications, the proposed power electronics solutions, the advantages and drawbacks of all these technologies, and perspectives for future research works in terms of smart EV charging and up-to-date solutions for power system disturbances mitigation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3