Scalable Residential Building Geometry Characterisation Using Vehicle-Mounted Camera System

Author:

Dai MenglinORCID,Ward Wil O. C.,Arbabi HadiORCID,Densley Tingley Danielle,Mayfield Martin

Abstract

Residential buildings are an important sector in the urban environment as they provide essential dwelling space, but they are also responsible for a significant share of final energy consumption. In addition, residential buildings that were built with outdated standards usually face difficulty meeting current energy performance standards. The situation is especially common in Europe, as 35% of buildings were built over fifty years ago. Building retrofitting techniques provide a choice to improve building energy efficiency while maintaining the usable main structures, as opposed to demolition. The retrofit assessment requires the building stock information, including energy demand and material compositions. Therefore, understanding the building stock at scale becomes a critical demand. A significant piece of information is the building geometry, which is essential in building energy modelling and stock analysis. In this investigation, an approach has been developed to automatically measure building dimensions from remote sensing data. The approach is built on a combination of unsupervised machine learning algorithms, including K-means++, DBSCAN and RANSAC. This work is also the first attempt at using a vehicle-mounted data-capturing system to collect data as the input to characterise building geometry. The developed approach is tested on an automatically built and labelled point cloud model dataset of residential buildings and shows capability in acquiring comprehensive geometry information while keeping a high level of accuracy when processing an intact model.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference35 articles.

1. United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time

2. Final UK Greenhouse Gas Emissions National Statistics: 1990 to 2019 Summary;Department for Business, Energy & Industrial Strategy, U.G,2020

3. UK Energy in Brief;Department for Business, Energy & Industrial Strategy, U.G,2020

4. UK Housing: Fit for the Future?—Climate Change Committee https://www.theccc.org.uk/publication/uk-housing-fit-for-the-future/

5. Residential building facade segmentation in the urban environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3