Abstract
Residential buildings are an important sector in the urban environment as they provide essential dwelling space, but they are also responsible for a significant share of final energy consumption. In addition, residential buildings that were built with outdated standards usually face difficulty meeting current energy performance standards. The situation is especially common in Europe, as 35% of buildings were built over fifty years ago. Building retrofitting techniques provide a choice to improve building energy efficiency while maintaining the usable main structures, as opposed to demolition. The retrofit assessment requires the building stock information, including energy demand and material compositions. Therefore, understanding the building stock at scale becomes a critical demand. A significant piece of information is the building geometry, which is essential in building energy modelling and stock analysis. In this investigation, an approach has been developed to automatically measure building dimensions from remote sensing data. The approach is built on a combination of unsupervised machine learning algorithms, including K-means++, DBSCAN and RANSAC. This work is also the first attempt at using a vehicle-mounted data-capturing system to collect data as the input to characterise building geometry. The developed approach is tested on an automatically built and labelled point cloud model dataset of residential buildings and shows capability in acquiring comprehensive geometry information while keeping a high level of accuracy when processing an intact model.
Funder
Engineering and Physical Sciences Research Council
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference35 articles.
1. United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time
2. Final UK Greenhouse Gas Emissions National Statistics: 1990 to 2019 Summary;Department for Business, Energy & Industrial Strategy, U.G,2020
3. UK Energy in Brief;Department for Business, Energy & Industrial Strategy, U.G,2020
4. UK Housing: Fit for the Future?—Climate Change Committee
https://www.theccc.org.uk/publication/uk-housing-fit-for-the-future/
5. Residential building facade segmentation in the urban environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献