Sliding Mode Controller for Parameter-Variable Load Sharing in Islanded AC Microgrid

Author:

Hajihosseini Mojtaba,Lešić VinkoORCID,Shaheen Husam I.ORCID,Karimaghaee PaknooshORCID

Abstract

Controlling voltage, frequency, and current in an islanded microgrid is a challenging problem because the distributed generation sources, stochastic and intermittent in nature, are not connected to the main electricity network to provide stable and clean energy. Therefore, the design of a robust controller to control the output parameters of the islanded microgrid and suppress load variations and disturbances is essential. In this paper, a hysteresis controller is proposed and designed to control the output voltage of an islanded AC microgrid and an improved sliding mode controller (SMC) based on adaptive control principle is designed to control the current of the microgrid. The current controller consists of two parts: An adaptation part, which aims to eliminate disturbances and system uncertainties, and a second part, which aims to deal with the tracking problem of the system under parameter-varying topologies. The adaptation strategy has the advantage of solving the gain tuning problem and chattering reduction. It also requires limited information about disturbance and uncertainties of the system. To validate the proposed control methodology and show its effectiveness, a case study of a simulated islanded microgrid is presented. The results show that the proposed controllers can effectively control the current and voltage underload changes and increase the stability and resilience of the microgrid. The results also reveal that the performance of the proposed controller in terms of total harmonic distortion (THD) and dynamic response overcome the performance of conventional controller by a 4× reduction in THD and 40–200× reduction in settling time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3