Asymmetric Cross Metasurfaces with Multiple Resonances Governed by Bound States in the Continuum

Author:

Fan Hongjie1,Li Jing1,Sun Yuhang1,Wang Xueyu1,Wu Tiesheng2,Liu Yumin1

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. College of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

The bound state in the continuum (BIC) has paved a new way to achieve excellent localization of the resonant mode coexisting with a continuous spectrum in the metasurface. Here, we propose an all-dielectric metasurface consisting of periodic pairs of asymmetric crosses that supports multiple Fano resonances. Due to the sufficient degrees of freedom in the unit cell, we displaced the vertical bars horizontally to introduce in-plane perturbation, doubling the unit cell structure. Dimerization directly resulted in the folding of the Brillouin zone in k space and transformed the BIC modes into quasi-BIC resonances. Then, simultaneous in-plane symmetry breaking was introduced in both the x and y directions to excite two more resonances. The physical mechanisms of these BIC modes were investigated by multipole decomposition of the scattering cross section and electromagnetic near-field analysis, confirming that they are governed by toroidal dipole (TD) modes and magnetic dipole (MD) modes. We also investigated the flexible tunability and evaluated the sensing performance of our proposed metasurface. Our work is promising for different applications requiring stable and tunable resonances, such as optical switching and biomolecule sensing.

Funder

National Natural Science Foundation of China

BUPT Action Plan Project

Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3