A Fast Design Method of Anisotropic Dielectric Lens for Vortex Electromagnetic Wave Based on Deep Learning

Author:

Liang Bingyang12ORCID,Zhang Yonghua3,Zhou Yuanguo1ORCID,Liu Weiqiang3,Ni Tao3,Wang Anyi1,Fan Yanan4

Affiliation:

1. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. National Key Laboratory on Vacuum Electronics, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China

3. The Xi’an Research Institute of Navigation Technology, Xi’an 710054, China

4. The National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Orbital angular momentum (OAM) has made it possible to regulate classical waves in novel ways, which is more energy- or information-efficient than conventional plane wave technology. This work aims to realize the transition of antenna radiation mode through the rapid design of an anisotropic dielectric lens. The deep learning neural network (DNN) is used to train the electromagnetic properties of dielectric cell structures. Nine variable parameters for changing the dielectric unit structure are present in the input layer of the DNN network. The trained network can predict the transmission phase of the unit cell structure with greater than 98% accuracy within a specific range. Then, to build the corresponding relationship between the phase and the parameters, the gray wolf optimization algorithm is applied. In less than 0.3 s, the trained network can predict the transmission coefficients of the 31 × 31 unit structure in the arrays with great accuracy. Finally, we provide two examples of neural network-based rapid anisotropic dielectric lens design. Dielectric lenses produce the OAM modes +1, −1, and −1, +2 under TE and TM wave irradiation, respectively. This approach resolves the difficult phase matching and time-consuming design issues associated with producing a dielectric lens.

Funder

Natural Science Basic Research Program of Shanxi “Research and Development”

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3