Organic Farming Improves Soil Microbial Abundance and Diversity under Greenhouse Condition: A Case Study in Shanghai (Eastern China)

Author:

Liao Jianli,Liang Yun,Huang DanfengORCID

Abstract

Agricultural practices have significant impacts on soil properties and microbial communities; however, little is known about their responses to open field and plastic tunnels under organic and conventional farming. We therefore investigated the responses of soil chemical variables and microbial communities to different agricultural management and cultivation types, including organic management in open field (OF), organic management in plastic tunnels (OP), conventional management in open field (CF) and conventional management in plastic tunnels (CP), by using a pyrosequencing approach of 16S rRNA gene amplicon. Both factors had significant influences on the soil properties and microbial communities. Organic farming increased the nutrient-related soil variables compared to conventional farming regardless of cultivation type, especially for the available N and P, which were increased by 137% and 711%, respectively, in OP compared to CP. Additionally, OP had the highest microbial abundance and diversity among treatments, whereas no difference was found between OF, CF and CP. Furthermore, OP possessed diverse differential bacteria which were mainly related to the organic material turnover (e.g., Roseiflexus, Planctomyces and Butyrivibrio) and plant growth promotion (e.g., Nostoc, Glycomyces and Bacillus). Redundancy analysis (RDA) showed that pH, electrical conductivity (EC), nutrient levels (e.g., available N and available P) and total Zn content were significantly correlated to the structure of the microbial community. Overall, our results showed that the long-term organic farming with high fertilizer input increased soil nutrient levels and microbial abundance and diversity under plastic-tunnel condition compared to other cultivation systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3