Cross-Linked Gel Polymer Electrolyte Based on Multiple Epoxy Groups Enabling Conductivity and High Performance of Li-Ion Batteries

Author:

Zhang Wei1ORCID,Bae Wansu1,Jin Lei1ORCID,Park Sungjun1,Jeon Minhyuk1,Kim Whangi1ORCID,Jang Hohyoun1ORCID

Affiliation:

1. Department of Applied Chemistry, Konkuk University, Chungju-si 27478, Republic of Korea

Abstract

The low ionic conductivity and unstable interface of electrolytes/electrodes are the key issues hindering the application progress of lithium-ion batteries (LiBs). In this work, a cross-linked gel polymer electrolyte (C-GPE) based on epoxidized soybean oil (ESO) was synthesized by in situ thermal polymerization using lithium bis(fluorosulfonyl)imide (LiFSI) as an initiator. Ethylene carbonate/diethylene carbonate (EC/DEC) was beneficial for the distribution of the as-prepared C-GPE on the anode surface and the dissociation ability of LiFSI. The resulting C-GPE-2 exhibited a wide electrochemical window (of up to 5.19 V vs. Li+/Li), an ionic conductivity (σ) of 0.23 × 10−3 S/cm at 30 °C, a super-low glass transition temperature (Tg), and good interfacial stability between the electrodes and electrolyte. The battery performance of the as-prepared C-GPE-2 based on a graphite/LiFePO4 cell showed a high specific capacity of ca. 161.3 mAh/g (an initial Coulombic efficiency (CE) of ca. 98.4%) with a capacity retention rate of ca. 98.5% after 50 cycles at 0.1 C and an average CE of about ca. 98.04% at an operating voltage range of 2.0~4.2 V. This work provides a reference for designing cross-linking gel polymer electrolytes with high ionic conductivity, facilitating the practical application of high-performance LiBs.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3