Re-Entrant Conformation Transition in Hydrogels

Author:

Okay OguzORCID

Abstract

Hydrogels are attractive materials not only for their tremendous applications but also for theoretical studies as they provide macroscopic monitoring of the conformation change of polymer chains. The pioneering theoretical work of Dusek predicting the discontinuous volume phase transition in gels followed by the experimental observation of Tanaka opened up a new area, called smart hydrogels, in the gel science. Many ionic hydrogels exhibit a discontinuous volume phase transition due to the change of the polymer–solvent interaction parameter χ depending on the external stimuli such as temperature, pH, composition of the solvent, etc. The observation of a discontinuous volume phase transition in nonionic hydrogels or organogels is still a challenging task as it requires a polymer–solvent system with a strong polymer concentration dependent χ parameter. Such an observation may open up the use of organogels as smart and hydrophobic soft materials. The re-entrant phenomenon first observed by Tanaka is another characteristic of stimuli responsive hydrogels in which they are frustrated between the swollen and collapsed states in a given solvent mixture. Thus, the hydrogel first collapses and then reswells if an environmental parameter is continuously increased. The re-entrant phenomenon of hydrogels in water–cosolvent mixtures is due to the competitive hydrogen-bonding and hydrophobic interactions leading to flow-in and flow-out of the cosolvent molecules through the hydrogel moving boundary as the composition of the solvent mixture is varied. The experimental results reviewed here show that a re-entrant conformation transition in hydrogels requires a hydrophobically modified hydrophilic network, and a moderate hydrogen-bonding cosolvent having competitive attractions with water and polymer. The re-entrant phenomenon may widen the applications of the hydrogels in mechanochemical transducers, switches, memories, and sensors.

Funder

Turkish Academy of Sciences

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference65 articles.

1. Volume phase transition and related phenomena of polymer gels;Shibayama;Adv. Polym. Sci.,1993

2. Microgels- intramolecularly crosslinked macromolecules with a globular structure;Funke;Adv. Polym. Sci.,1998

3. Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly‐styrol

4. Principles of Polymer Chemistry;Flory,1953

5. Scaling Concepts in Polymer Physics;de Gennes,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3