Thermally Tunable Acoustic Beam Splitter Based on Poly(vinyl alcohol) Poly(N-isopropylacrylamide) Hydrogel

Author:

Jin YuqiORCID,Zhou Mi,Choi Tae-Youl,Neogi ArupORCID

Abstract

In this study, we demonstrated a thermally tunable acoustic beam splitter using a poly(vinyl alcohol) poly(N-isopropylacrylamide) hydrogel (PVA-pNIPAM). The nature of PVA-pNIPAM hydrogel offers exceptional temperature-dependent physical properties due to its phase transition around its lower critical solution temperature. The acoustic impedance of the hydrogel can be tuned below, above, or matched to that of water by changing the environmental temperature. An acoustic wave propagating in water can be split into transmitted and reflected components by the PVA-pNIPAM hydrogel slab on varying its angle of incidence. The intensity ratio between the reflected and the transmitted componence can be adjusted by tuning the temperature of the medium. The acoustic beam can be entirely reflected at a temperature corresponding to the matched impedance between hydrogel and water. The beam-splitting behavior was observed for acoustic waves from both a monochromatic wave and broadband pulse source. In addition, the phase of beam split pulses can be reversed by selecting the hydrogel’s operating temperature.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3