Optimal Design of Formulas for a Single Degree of Freedom Tuned Mass Damper Parameter Using a Genetic Algorithm and H2 Norm

Author:

Kim Seunggoo1ORCID,Lee Donwoo1ORCID,Lee Seungjae1ORCID

Affiliation:

1. School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea

Abstract

One of the researchers’ concerns in structural engineering is to control the dynamic behavior of structures efficiently. The TMD (tuned mass damper) is one of the effective methods of controlling the vibration of structures, and various numerical techniques have been proposed to find the optimal parameters of the TMD. This paper develops a new explicit formula to derive the optimal parameters of the TMD of a single degree of freedom (SDOF) structure under seismic load using a genetic algorithm (GA). In addition, the state-space model and the H2 norm function are used to identify the optimal frequency ratio and damping ratio of the TMD that minimize the overall vibration energy of the structure. The MATLAB curve fitting toolbox is used for the explicit formula proposal, and the validity of the proposed formula is verified through multidimensional performance verification technique. Finally, the TMD parameters of the SDOF structure are applied to the multi-degrees of freedom (MDOF) structure to compare and analyze with the existing research results, and the results of the explicit formula proposed in this paper are confirmed to be excellent. This paper can suggest a new direction for determining the optimal TMD parameters using a GA and can be effectively applied to vibration control problems of various structures.

Funder

National Research Foundation of Korea

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

Reference40 articles.

1. Deng, Z., Huang, M., Wan, N., and Zhang, J. (2023). The current development of structural health monitoring for bridges: A review. Buildings, 13.

2. Missing measurement data recovery methods in structural health monitoring: The state, challenges and case study;Zhang;Measurement,2024

3. Estimation of optimum tuned mass damper parameters via machine learning;Yucel;J. Build. Eng.,2019

4. Results of trials of the anti-rolling tanks at sea;Frahm;J. Am. Soc. Nav. Eng.,1911

5. The theory of the dynamic vibration absorber;Ormondroyd;J. Fluids Eng.,1928

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3