Effects of Aging on New Bone Regeneration in a Mandibular Bone Defect in a Rat Model

Author:

Park Jung Ho1,Park Jong Hoon1,Yu Hwa Young2,Seok Hyun13ORCID

Affiliation:

1. Department of Orl and Maxillofacial Surgery, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea

Abstract

The effects of aging on the healing capacity of maxillofacial bone defects have not been studied. The aim of this study was to evaluate the effects of aging on the regeneration of round bony defects in the mandible. We created a round-shaped bony defect in the mandibular angle area in rats of different ages (2-[2 M], 10-[10 M], and 20-month-old [20 M]) and evaluated new bone regeneration in these groups. Changes in bone turnover markers such as alkaline phosphatase, procollagen type I N-terminal propeptide (PINP), cross-linked C-telopeptide of type I collagen, and tartrate-resistant acid phosphatase 5B (TRAP5b) were investigated. The bone volume/total volume and bone mineral density of the 20 M group were significantly higher than those of the 2 M group (p = 0.029, 0.019). A low level of the bone formation marker PINP was observed in the 20 M group, and a high level of the bone resorption marker TRAP5b was observed in the 10 M and 20 M groups. Micro-computed tomography (µ-CT) results showed that older rats had significantly higher bone formation than younger rats, with lower serum levels of PINP and higher levels of TRAP5b. The local environment of the old rat bone defects, surrounded by thickened bone, may have affected the results of our study. In conclusion, old rats showed greater new bone regeneration and healing capacity for round mandibular bone defects. This result was related to the fact that the bone defects in the 20 M rat group provided more favorable conditions for new bone regeneration.

Funder

National Research Foundation of Korea

Biomedical Research Institute of Jeonbuk National University Hospital

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3