Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments

Author:

Blanco Juan C. Gómez1ORCID,Macías-García Antonio2ORCID,Rodríguez-Rego Jesús M.2ORCID,Mendoza-Cerezo Laura2ORCID,Sánchez-Margallo Francisco M.1ORCID,Marcos-Romero Alfonso C.2ORCID,Pagador-Carrasco José B.1ORCID

Affiliation:

1. Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km41.8, 10071 Cáceres, Spain

2. Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain

Abstract

3D bioprinting is a promising technique for creating artificial tissues and organs. One of the main challenges of bioprinting is cell damage, due to high pressures and tensions. During the biofabrication process, extrusion bioprinting usually results in low cell viability, typically ranging from 40% to 80%, although better printing performance with higher cell viability can be achieved by optimising the experimental design and operating conditions, with nozzle geometry being a key factor. This article presents a review of studies that have used computational fluid dynamics (CFD) to optimise nozzle geometry. They show that the optimal ranges for diameter and length are 0.2 mm to 1 mm and 8 mm to 10 mm, respectively. In addition, it is recommended that the nozzle should have an internal angle of 20 to 30 degrees, an internal coating of ethylenediaminetetraacetic acid (EDTA), and a shear stress of less than 10 kPa. In addition, a design of experiments technique to obtain an optimal 3D bioprinting configuration for a bioink is also presented. This experimental design would identify bioprinting conditions that minimise cell damage and improve the viability of the printed cells.

Funder

European Regional Development Fund

project BIOIMP_ACE_MAS_6_E

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3