Swifts Form V-Shaped Wings While Dipping in Water to Fine-Tune Balance

Author:

Cui Shuangwei1,Peng Zhongjun1ORCID,Yang Hua2,Liu Hao3,Liu Yang4,Wu Jianing12

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, China

2. School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen 518107, China

3. Key & Core Technology Innovation Institute of the Greater Bay Area, Guangzhou 510535, China

4. State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Swifts, a distinctive avian cohort, have garnered widespread attention owing to their exceptional flight agility. While their aerial prowess is well documented, the challenge swifts encounter while imbibing water introduces an intriguing complexity. The act of water uptake potentially disrupts their flight equilibrium, yet the mechanisms enabling these birds to maintain stability during this process remain enigmatic. In this study, we employed high-speed videography to observe swifts’ water-drinking behavior. Notably, we observed that the swift adopts a dynamic V-shaped wing configuration during water immersion with the ability to modulate the V-shaped angle, thereby potentially fine-tuning their balance. To delve deeper, we utilized a three-dimensional laser scanner to meticulously construct a virtual 3D model of swifts, followed by computational fluid dynamics simulations to quantitatively assess the mechanical conditions during foraging. Our model indicates that the adoption of V-shaped wings, with a variable wing angle ranging from 30 to 60 degrees, serves to minimize residual torque, effectively mitigating potential flight instability. These findings not only enhance our comprehension of swifts’ flight adaptability but also hold promise for inspiring innovative, highly maneuverable next-generation unmanned aerial vehicles. This research thus transcends avian biology, offering valuable insights for engineering and aeronautics.

Funder

Shenzhen Science and Technology Program

Guangdong Provincial Science and Technology Plan Project (Science and Technology Innovation Platform), High-level Innovation Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3