Fractional-Order Boosted Hybrid Young’s Double-Slit Experimental Optimizer for Truss Topology Engineering Optimization

Author:

Qin Song1,Liu Junling2,Bai Xiaobo1,Hu Gang3ORCID

Affiliation:

1. School of Art and Design, Xi’an University of Technology, Xi’an 710054, China

2. National Demonstration Center for Experimental Arts Education, Nankai University, Tianjin 300371, China

3. Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China

Abstract

Inspired by classical experiments that uncovered the inherent properties of light waves, Young’s Double-Slit Experiment (YDSE) optimization algorithm represents a physics-driven meta-heuristic method. Its unique search mechanism and scalability have attracted much attention. However, when facing complex or high-dimensional problems, the YDSE optimizer, although striking a good balance between global and local searches, does not converge as fast as it should and is prone to fall into local optimums, thus limiting its application scope. A fractional-order boosted hybrid YDSE, called FYDSE, is proposed in this article. FYDSE employs a multi-strategy mechanism to jointly address the YDSE problems and enhance its ability to solve complex problems. First, a fractional-order strategy is introduced into the dark edge position update of FYDSE to ensure more efficient use of the search potential of a single neighborhood space while reducing the possibility of trapping in a local best. Second, piecewise chaotic mapping is constructed at the initial stage of the population to obtain better-distributed initial solutions and increase the convergence rate to the optimal position. Moreover, the low exploration space is extended by using a dynamic opposition strategy, which improves the probability of acquisition of a globally optimal solution. Finally, by introducing the vertical operator, FYDSE can better balance global exploration and local exploitation and explore new unknown areas. The numerical results show that FYDSE outperforms YDSE in 11 (91.6%) of cec2022 sets. In addition, FYDSE performs best in 8 (66.6%) among all algorithms. Compared with the 11 methods, FYDSE obtains the optimal best and average weights for the 20-bar, 24-bar, and 72-bar truss problems, which proves its efficient optimization capability for difficult optimization cases.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3