Enhanced Adhesion of Synthetic Discs with Micro-Patterned Margins

Author:

Zhou Weimian,Wu Xuan

Abstract

Many aquatic creatures in nature have non-cooperative surface scaling abilities using suction organs; micro-/nano-scale structures found in different parts of the organs play an important role in this mechanism. Synthetic bioinspired suction devices have been developed, but the mechanisms of bioinspired suction system need further investigation. This paper presents the development of a synthetic adhesive disc inspired by the hillstream loach. The microscopic structures involved in adhesion of the hillstream loach were investigated. Bioinspired suction discs were designed with single-level or hierarchical micropatterned margins. Micro three-dimensional (3D) printing and micro electromechanical system (MEMs) technology were utilized in the fabrication of the discs, and the adhesion performance was tested on substrates with different roughness values. The engaging and disengaging processes of the margin were simulated by carrying out a peeling test on a submerged substrate. The interactions between the liquid film and the microstructures were observed using fluorescence microscopy. The enhanced adhesion forces due to the synergy of the hierarchically micro-patterned margin and the disc cavity were duplicated in the synthetic adhesion system.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3