States of Aggregation and Phase Transformation Behavior of Metallosurfactant Complexes by Hexacyanoferrate(II): Thermodynamic and Kinetic Investigation of ETR in Ionic Liquids and Liposome Vesicles

Author:

Nagaraj Karuppiah,Sakthinathan Subramanian,Chiu Te-WeiORCID,Kamalesu Subramaniam,Lokhandwala Snehal,Parekh Nikhil M.,Karuppiah ChelladuraiORCID

Abstract

Electronic absorption spectroscopy was used to study the ETR of surfactant–cobalt(III) complexes containing imidazo[4,5-f][1,10]phenanthroline, dipyrido[3,2-d:2′-3′-f]quinoxaline and dipyrido[3,2-a:2′,4′-c](6,7,8,9-tetrahydro)phenazine ligands by using ferrocyanide ions in unilamellar vesicles of dipalmitoylphosphotidylcholine (DPPC) and 1-butyl-3-methylimidazolium bromide ((BMIM)Br), at different temperatures under pseudo-first-order conditions using an excess of the reductant. The reactions were found to be second-order and the electron transfer is postulated as occurring in the outer sphere. The rate constant for the electron transfer reactions was found to increase with increasing concentrations of ionic liquids. Besides these, the effects of surfactant complex ions on liposome vesicles in these same reactions have also been studied on the basis of hydrophobicity. We observed that, below the phase transition temperature, there is an increasing amount of surfactant–cobalt(III) complexes expelled from the interior of the vesicle membrane through hydrophobic effects, while above the phase transition temperature, the surfactant–cobalt(III) complexes are expelled from the interior to the exterior surface of the vesicle. Kinetic data and activation parameters are interpreted in respect of an outer-sphere electron transfer mechanism. By assuming the existence of an outer-sphere mechanism, the results have been clarified based on the presence of hydrophobicity, and the size of the ligand increases from an ip to dpqc ligand and the reactants become oppositely charged. In all these media, the ΔS# values are recognized as negative in their direction in all the concentrations of complexes employed, indicative of a more ordered structure of the transition state. This is compatible with a model in which these complexes and [Fe(CN)6]4− ions bind to the DPPC in the transition state. Thus, the results have been interpreted based on the self-aggregation, hydrophobicity, charge densities of the co-ligand and the reactants with opposite charges.

Funder

CSIR

DST

UGC

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference54 articles.

1. Rosen, M.J. (1978). Surfactants and Interfacial Phenomena, Wiley.

2. McBain, J.W., and Heath, D.C. (2003). Handbook of Surface and Colloid Chemistry, CRC Press.

3. Tanford, C. (1973). The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley-Interscience.

4. Fendler, J.H., and Fendler, E.J. (1975). Catalysis in Micellar and Macromolecular Systems, Academic Press.

5. Electron transfer. Part 148. Reactions of corrin-bound cobalt(III) with s2 metal-ion reducing centers;Babich;Inorg. Chim. Acta,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3