Balanced Standing on One Foot of Biped Robot Based on Three-Particle Model Predictive Control

Author:

Yang YongORCID,Shi JiyuanORCID,Huang Songrui,Ge Yuhong,Cai WenhanORCID,Li Qingkai,Chen Xueying,Li XiuORCID,Zhao MingguoORCID

Abstract

Balancing is a fundamental task in the motion control of bipedal robots. Compared to two-foot balancing, one-foot balancing introduces new challenges, such as a smaller supporting polygon and control difficulty coming from the kinematic coupling between the center of mass (CoM) and the swinging leg. Although nonlinear model predictive control (NMPC) may solve this problem, it is not feasible to implement it on the actual robot because of its large amount of calculation. This paper proposes the three-particle model predictive control (TP-MPC) approach. It combines with the hierarchical whole-body control (WBC) to solve the one-leg balancing problem in real time. The bipedal robot’s torso and two legs are modeled as three separate particles without inertia. The TP-MPC generates feasible swing leg trajectories, followed by the WBC to adjust the robot’s center of mass. Since the three-particle model is linear, the TP-MPC requires less computational cost, which implies real-time execution on an actual robot. The proposed method is verified in simulation. Simulation results show that our method can resist much larger external disturbance than the WBC-only control scheme.

Funder

Science and Technology Innovation 2030-Key Project

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fall Recovery Strategies in Humanoid Robots: A Brief Survey;2023 8th International Conference on Control, Robotics and Cybernetics (CRC);2024-12-22

2. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots;Biomimetics;2023-12-16

3. Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot;Biomimetics;2023-06-15

4. Hopping Motion on Heavy-Legged Bipedal Robot Based on SLIP Model and Whole Body Control;2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3