Perceiving like a Bat: Hierarchical 3D Geometric–Semantic Scene Understanding Inspired by a Biomimetic Mechanism

Author:

Zhang Chi1ORCID,Yang Zhong1,Xue Bayang1,Zhuo Haoze1,Liao Luwei1,Yang Xin1,Zhu Zekun1

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Geometric–semantic scene understanding is a spatial intelligence capability that is essential for robots to perceive and navigate the world. However, understanding a natural scene remains challenging for robots because of restricted sensors and time-varying situations. In contrast, humans and animals are able to form a complex neuromorphic concept of the scene they move in. This neuromorphic concept captures geometric and semantic aspects of the scenario and reconstructs the scene at multiple levels of abstraction. This article seeks to reduce the gap between robot and animal perception by proposing an ingenious scene-understanding approach that seamlessly captures geometric and semantic aspects in an unexplored environment. We proposed two types of biologically inspired environment perception methods, i.e., a set of elaborate biomimetic sensors and a brain-inspired parsing algorithm related to scene understanding, that enable robots to perceive their surroundings like bats. Our evaluations show that the proposed scene-understanding system achieves competitive performance in image semantic segmentation and volumetric–semantic scene reconstruction. Moreover, to verify the practicability of our proposed scene-understanding method, we also conducted real-world geometric–semantic scene reconstruction in an indoor environment with our self-developed drone.

Funder

Guizhou Provincial Science and Technology Projects

Science and Technology Projects of China Southern Power Grid Co. Ltd.

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3