Brochosome-Inspired Metal-Containing Particles as Biomimetic Building Blocks for Nanoplasmonics: Conceptual Generalizations

Author:

Jakšić ZoranORCID,Obradov MarkoORCID,Jakšić OlgaORCID

Abstract

Recently, biological nanostructures became an important source of inspiration for plasmonics, with many described implementations and proposed applications. Among them are brochosome-inspired plasmonic microstructures—roughly spherical core-shell particles with submicrometer diameters and with indented surfaces. Our intention was to start from the nanoplasmonic point of view and to systematically classify possible alternative forms of brochosome-inspired metal-containing particles producible by the state-of-the-art nanofabrication. A wealth of novel structures arises from this systematization of bioinspired metal-containing nanocomposites. Besides various surface nanoapertures, we consider structures closely related to them in electromagnetic sense like surface nano-protrusions, shell reliefs obtained by nano-sculpting, and various combinations of these. This approach helped us build a new design toolbox for brochosome-inspired structures. Additionally, we used the finite elements method to simulate the optical properties of simple brochosome-inspired structures. We encountered a plethora of advantageous optical traits, including enhanced absorption, antireflective properties, and metamaterial behavior (effective refractive index close to zero or negative). We conclude that the presented approach offers a wealth of traits useful for practical applications. The described research represents our attempt to outline a possible roadmap for further development of bioinspired nanoplasmonic particles and to offer a source of ideas and directions for future research.

Funder

Ministry of Education, Science and Technological Development, Serbia

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3