The Effects of a Custom−Designed High−Collar Shoe on Muscular Activity, Dynamic Stability, and Leg Stiffness: A Biomimetic Approach Study

Author:

Nasirzadeh Alireza1,Yang Jaeha1,Yang Seungtae1,Yun Juseok2,Bae Young Yoon3ORCID,Park Juyeon3,Ahn Jooeun45ORCID,Lee Giuk1ORCID

Affiliation:

1. Department of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

2. HUROTICS Inc., Seoul 06974, Republic of Korea

3. Department of Fashion and Textiles, Seoul National University, Seoul 08826, Republic of Korea

4. Department of Physical Education, Seoul National University, Seoul 08826, Republic of Korea

5. Institute of Sport Science, Seoul National University, Seoul 08826, Republic of Korea

Abstract

High-collar shoes are a biomimetic approach to preventing lateral ankle injuries during high-demand activities; however, the influence of collar stiffness (CS) on parameters related to lateral ankle sprain prevention during running remains unclear. In this study, we investigated the effects of a custom-designed shoe CS on muscular activity, dynamic stability, and leg stiffness (Kleg) during running using a biomimetic design approach inspired by the mechanisms of ankle sprain prevention. Sixteen healthy male participants ran on a treadmill while wearing a custom-designed high-collar shoe with low, medium, and high CS conditions, measured using circumferential ankle pressure (CAP). Lower extremity kinematics and electromyography (EMG) data were recorded simultaneously. One-way repeated-measures ANOVA was conducted to compare the CS conditions. Results indicate that high and medium CS conditions significantly reduce sagittal and frontal ankle ranges of motion (ROMs) compared to the low CS condition, providing improved stability and support against lateral ankle sprain; moreover, there was a trend towards higher dynamic stability and Kleg with increasing CS. Our study highlights the importance of considering the CAP in regulating high-collar stiffness properties and how higher CS may provide better support for the ankle during running. Nevertheless, additional research is necessary to validate the efficacy of the current design in preventing ankle sprains during high-demand activities.

Funder

Industrial Strategic Technology Development Program

R&D Program for Forest Science Technology

Korea Medical Device Development Fund

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3